Jeremie Maire

J_MAIRE.jpg Host Laboratory NOMURA LAB.
Position in LIMMS  PhD Student
Main Research Topic in LIMMS

NANOTECH - Silicon phononic crystals for thermoelectric applications


Silicon, Phonons, Thermal conductivity, Nanostructures, Thermoelectricity

Contact LIMMS/CNRS-IIS (UMI 2820)
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Phone:+81 (0)3 5452 6036 / Fax:+81 (0)3 5452 6088
E-mail jmaire at
Download  icon_pdf.gifAbstract2015_JMaire.pdf , Abstract2016


Short resume :
2012-now Actual position
2008-2012 Here
2004-2008 Here
2001-2003 Here

↑Page top

Research Projects in Limms

1-Silicon phononic crystals for thermoelectric applications

Context :
Not only is most of the energy in electronic devices lost, heating the chip, but this is a much more general phenomenon as more than 60% of man-produced energy is lost as heat.
Objectives :
We aim at retransforming this wasted heat back into electricity, but also collecting it from the environment in order to design energy autonomous systems including wireless transmission. The first goal is to be able to control the heat flow in silicon structures. This will also open prospects in heat management at the nanoscale in electronic chips.
Methods :
We try to create a structure which will block the heat carriers, namely phonons, while keeping the electrical conductivity identical by creating periodic nanostructures, called phononic crystals, in thin membranes. To ensure an optimal compatibility, we investigate the use of silicon, which also allows finer designs as its fabrication process is quite well known.
By taking advantage of boundary scattering, size effects and coherent phonon transport, the thermal conductivity can be adjusted, hopefully down to the level of amorphous silicon oxide. The structures need to be carefully designed to efficiently suppress phonons carrying heat.
The first objective is to demonstrate the coherent phononic effect by measuring the phononic crystals thermal conductivity at low temperatures.
Results :
Three types of structures haves been fabricated: nanowires, 1D fishbone periodic structures and 2D phononic crystals. For similar characteristic sizes, the thermal conductivities are reduced in this same order and further reduction due to possible coherent transport has been observed in 2D phononic crystals.


Fig. 1 Representation of laser heating the metal pad and spreading heat in a 2D PnC.


Fig. 2 SEM image of a 1D Phononic crystal.

References :
[1] J.-K. Yu, Nature Nanotechnology, vol. 5, pp. 718_721, 2010.
[2] J. Maire and M. Nomura, Jpn. J. of Appl. Phys, 53, 06JE09 (2014)
[3] M. Nomura, J. Maire et al., Appl. Phys. Lett. (2015) (Accepted)

↑Page top

Main publication List (papers, conferences and patent)


      1. Y. Kage, H. Hagino, R. Yanagisawa, J. Maire, K. Miyazaki, and M. Nomura, “Thermal phonon transport in Si thin film with dog-leg shaped asymmetric nanostructures,” Jpn. J. Appl. Phys. 55, 085201 (2016).


      1. R. Anufriev, A. Ramiere, J. Maire and M. Nomura, “Directional heat flow engineering by phononic nanostructures,” Eurotherm 108 Nanoscale and Microscale Heat Transfer V, Santorini, Greece (2016).
      2. R. Anufriev, A. Ramiere, J. Maire and M. Nomura, “Ballistic thermal emission and heat focusing by silicon phononic nanostructures,” the 76th JSAP Fall Meeting 2016, Niigata, September (2016).
      3. J. Maire, R. Anufriev and M. Nomura, “Ballistic phonon transport in Si nanowires,” the 76th JSAP Fall Meeting 2016, Niigata, September (2016).
      4. J. Maire, R. Anufriev, R. Yanagisawa, S. Volz and M. Nomura, “Thermal conduction control by thermal phononics and its mechanisms,” the 63rd JSAP Spring Meeting 2016, Tokyo, March (2016).
      5. R. Anufriev, J. Maire, and M. Nomura, “Reduction of thermal conductivity in periodic silicon nanostructures,” Compound Semiconductor Week (CSW) 2016, MoP-ISCS-066 , Toyama, Japan, June (2016).
      6. J. Maire, O. Paul and M. Nomura (Invited), “Silicon phononic crystals for thermoelectric applications,” EMN Meeting on Thermoelectric Materials 2016, A29, Orlando, USA, Feb (2016).
      7. M. Nomura, J. Nakagawa, J. Maire, and A. Roman, “Crystal structure dependent thermal conductivity in 2D phononic crystals,” 1st Pacific Rim Thermal Engineering Conference, 14-c-3-1, Hawaii, USA Mar (2016).



      1. J. Maire, T. Hori, J. Shiomi, M. Nomura, "Thermal conductivity reduction mechanism in Si 1D phononic crystals at room temperature ",  62nd JSAP Spring Meeting, Tokyo, Japan, March 11-14, 2015. Oral.
      2. J. Maire, R. Anufriev, and M. Nomura, “Thermal conductivity tuning by disorder in Silicon phononic crystal,” Phonons 2015, UK, July (2015).
      3. M. Nomura, Y. Kage, J. Nakagawa, T. Hori, J. Maire, J. Shiomi, D. Moser, and O. Paul, “Efficient reduction of thermal conductivity in Si multiscale architecture,” 34th Annual International Conference on Thermoelectrics, Dressden, Germany, June (2015).
      4. M. Nomura, Y. Kage, J. Nakagawa, J. Maire, D. Moser, and O. Paul, “Multiple-Scale Phonon Transport Control by Polycrystalline Si Phononic Crystal Nanostructures,” Phononics 2015, Mo-1-4, Paris, France, May (2015).
      5. R. Anufriev, J. Maire, and M. Nomura, “Impact of the Phononic Structure Design on the Reduction of Thermal Conductivity,” Phononics 2015, Tu-P5, Paris, France, May (2015).
      6. Y. Kage, J. Maire, D. Moser, O. Paul, and M. Nomura, “Large reduction in thermal conductivity of polycrystalline Si by phononic patterning,” MRS Spring Meeting, San Fransisco, April (2015).
      7. J. Maire, T. Hori, J. Shiomi, and M. Nomura, “Thermal conductivity reduction mechanism in Si 1D phononic crystals at room temperature,” MRS Spring Meeting, San Fransisco, April (2015).



      1. J. Maire and M. Nomura, “Reduced Thermal Conductivities of Si 1D periodic structure and Nanowires,” Jpn. J. of Appl. Phys, 53, 06JE09 (2014).
      2. M. Nomura and J. Maire, “Towards heat conduction control by phononic nanostructures,” Thermal Science and Engineering, 53, 67-72 (2014).
      3. M. Nomura and J. Maire, “Mechanism of reduced thermal conduction in fishbone type Si phononic crystal nanostructures,”J. Electron. Mat.,DOI: 10.1007/s11664-014-3387-8 (2014).
      1. M. Nomura and J. Maire, “Reduced thermal conduction in Si nanowires and phononic crystal nanostructures fabricated using EB lithography,” The 9th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, T1G-1, Hawaii, USA, Apr. (2014).
      2. 鹿毛雄太,Maire Jeremie,Moser Dominik,Paul Oliver,野村政宏, “単結晶および多結晶シリコンナノワイヤーの熱伝導特性比較,” 第75会応用物理学会秋季学術講演会, 18p-A7-15,札幌(2014).
      3. Maire Jeremie,野村政宏, “Temperature dependence of thermal conductivity for Si nanostructures,” 第75会応用物理学会秋季学術講演会, 18p-A7-16, 札幌(2014).
      4. 野村政宏, Jeremie Maire (Invited), “フォノニックナノ構造による伝熱制御にむけて,” 第51回日本伝熱シンポジウム, F233, 浜松 (2014).
      5. 坂田昌則,小宅教文,Jeremie Maire,堀琢磨,野村政宏,塩見淳一郎, “焼結シリコン界面の熱コンダクタンス,” 第51回日本伝熱シンポジウム, D334, 浜松 (2014).
      6. Jeremie Maire,堀琢磨,塩見淳一郎,野村政宏“シリコン一次元周期ナノ構造における熱伝導率低減の起源に関する考察,” 第61回応用物理学会春季学術講演会, 19p-F11-10, 青山学院大学, 神奈川 (2014).


2013 and prior

      1. Nomura Masahiro, Jeremie Maire, “Thermal conductivity reduction in Silicon nanostructures,” 第5回マイクロ・ナノ工学シンポジウム, 7PM1-C-3,Miyagi (2013).
      2. J. Maire and M. Nomura“Thermal conductivity measurements in phononic crystal nanostructures,“ International NAMIS Autumn School, 7, Seoul, Korea, Sep. (2013).
      3. J. Maire and M. Nomura, Thermal Conductivity in 1D and 2D Phononic Crystal Nanostructures, 2013 MRS Fall meeting, December 6, 2013, Boston (oral)
      4. J. Maire and M. Nomura,   Reduced Thermal Conductivities of Si 1D Phononic Crystal and Nanowire, 26th MNC, November 6, 2013, Sapporro (oral)
      5. J. Maire and M. Nomura, Thermal conductivity measurement of a 1D Silicon phononic crystal nanostructure, 74th JSAP Autumn meeting, September 20, 2013 Kyoto (oral)
      6. J. Maire and M. Nomura, Reduced thermal conductivity in a 1D Si phononic crystal nanostructure, EDISON 18, July, 22 – 25, 2013, Matsue (poster)
      7. Nomura Masahiro, Jeremie Maire, Tanabe Ryouhei, “Research on thermal conductivity in Si phononic crystal nanostructures,” 73rd JSAP Fall meeting, 13a-PA5-16, Matsuyama University, Ehime(2012).


↑Page top