Nicolas LAFITTE, Dr.

limms_Nicolas.jpg

Host Laboratory TOSHIYOSHI LAB.
Position in LIMMS

Postdoctoral researcher  |  Former CNRS PhD student

Main  Research Topic in LIMMS Advanced MEMS - Digitally programmable resonator by pzt-soi process
Keywords

Piezo-MEMS, Resonator, Coupled oscillators, PZT

Contact LIMMS/CNRS-IIS (UMI 2820)
Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505, Japan
Phone:+81 (0)3 5452 6036 / Fax:+81 (0)3 5452 6088
E-mail lafitte [at] iis.u-tokyo.ac.jp
Download icon_pdf.gifAbstract2015_NLafitte.pdf

Resume

Short resume :
2014-2017 Project researcher with SANTEC Corp. (Nagoya) and Toshiyoshi lab
"MEMS for tunable lasers"
2012-2014 Project researcher in Toshiyoshi lab
"Digitally programmable resonator by PZT-SOI process"
2008-2012 PhD student in Fujita lab
Thesis title: "Control of MEMS tweezers for DNA molecules characterization"

↑Page top

Research Projects in Limms

1- Digitally programmable resonator by pzt-soi process

Context :
Co-integration of micro-mechanical systems (MEMS) with integrated electronic circuits (IC) has been attracting major attention in the development of the micromachining technology. In most IC systems, quartz oscillator is commonly used as a frequency reference to keep track of time and to provide a stable clock signal for digital circuits or stabilize frequencies for Radio-Frequency circuits.
Objectives :
Here we aim to develop a piezo-MEMS oscillator array with more than 30 resonance modes that could be selectively excited by choosing an appropriate set of drive and pick-up electrodes distributed on the array network.
Methods :
Stanley Electric Co., Ltd. in Japan has developed a piezo-technology compatible with the processing of ICs. PZT films of large piezoelectric constant have been developed on an SOI (Silicon-on-Insulator) wafer by using the Arc Discharged Reactive Ion-Plating [1].
Results :
This more intricately developed resonator (Fig.2), in which 40 beams are coupled, deliver 31 resonant peaks in a frequency range from 10 kHz to 1 MHz. Q-factors are experimentally measured to be 600 or higher in air, and mechanical resonances obtained by laser Doppler vibrometer has also been confirmed by using the built-in piezoelectric sensors [2].

PZTresonator4x4_DevicePhoto01.png

Fig. 1 SEM image of 4 coupled cantilevers device.

PZTresonator1x1_DeviceSEM02.png

Fig. 2 Microscope picture of 40 coupled cantilevers device.

↑Page top

2- Modeling and control of MEMS tweezers for direct bio-mechanical sensing of bio-reactions on DNA

Context :
Nowadays, a huge interest exists on systematic and real-time biological analysis. Whereas experiments relying on optical or magnetic tweezers have a low throughput since the molecule preparation is done one at a time, our research means to demonstrate DNA molecule manipulation and characterization by micro machined silicon based tweezers.
Objectives :
Currently, the resolution achieved is in order of hundred of molecules of λ-DNA. Thanks to the development of a new method of resonance frequency characterization and a precise control design, it is expected to reach the sensing of a single molecule of DNA, competing with optical or magnetic tweezers resolutions. 
Methods :
The increase of MEMS complexity and the immutable dimensions downscaling implies the need to have a system robust to parameter uncertainty and external disturbances, to improve performances of the system. The application of control methods to the tweezers would lead to higher degrees of certainty and reliability of operations in physically demanding environments.
Results :
Although many factors play a crucial role in the successful design and implementation of control system, control design begins by examining the plant’s dynamic behavior, with the objective of developing a mathematical model whose behavior accurately replicates that of the real plant. 
The purpose of the developed mathematical model is to serve as a basis for subsequent control system design and simulation. Different sophisticated control methods have been developed fulfilling several and different types of disturbance rejection specifications. The synthesis and the implementation of a robust control algorithm upstream of the MEMS device to control its behavior constitute the next major step of the project.
References and Publications :
[1] M. Akamatsu et al., Jpn. J. Appl. Phys., Vol. 41, pp. 6976-6979, 2002.
[2] N. Lafitte et al., in Proc. Int. Conf. Solid-State Sensors Actuators (Transducers ’13), 2013.

(extract from 2009/2010 LIMMS booklet)

↑Page top

Main publication List (papers, conferences and patent)

2014

Journals
  1. N. Lafitte, Y. Haddab, Y. Le Gorrec, H. Guillou, L. Jalabert, D. Collard, et al., "Improvement of silicon nanotweezers sensitivity for mechanical characterization of biomolecules using closed- loop control," IEEE/ASME Trans. Mechatron., vol. Accepted, 2014.
  2. N. Lafitte, Y. Haddab, Y. Le Gorrec, M. Kumemura, L. Jalabert, C. Yamahata, et al., "DNA manipulation based on nanotweezers " in Enclyclopedia of nanotechnology, B. Bhusban, Ed., ed: Springer, 2014, p. (in press).
  3. D. Collard, N. Lafitte, H. Guillou, M. Kumemura, L. Jalabert, and H. Fujita, "Silicon Nano Tweezers for molecules and cells manipulation and characterization," in Emerging Tools for Micro and Nano Manipulation, X. Liu and Y. Sun, Eds., ed: Wiley-VCH, 2014, p. (in press).
Conferences
  1. M. Kumemura, S. L. Karsten, N. Lafitte, H. Guillou, L. Jalabert, H. Fujita, D. Collard, ELECTRICAL DETECTION OF AMPLIFIED DNA USING SILICON NANOTWEEZERS, 7th Asia-Pacific Conference on Transducers and Micro/Nano Technologies (APCOT2014), 11-3 (2pages), June 29 - July 2, 2014 / EXCO, Daegu, Korea.
  2. H. Guillou, N. Iwanaka, N. Lafitte, M. Kumemura, K. Shimizu, L. Jalabert, S. Kaneda, T. Fujii, H. Fujita, K. Sakata, S. Konishi, D. Collard, SILICON NANO TWEEZERS WITH FORCE/STIFFNESS/LOSSES MEASUREMENTS OF LOCAL CONTRACTILITY OF MYOCYTES, 7th Asia-Pacific Conference on Transducers and Micro/Nano Technologies (APCOT2014), 11-6 (2pages), June 29 - July 2, 2014 / EXCO, Daegu, Korea.
  3. P-T. Chiang, M. Kumemura , H.Fujita, G. Perret, N. Lafitte, L.Jalabert, D. Collard, A. Enomoto, K. Miyagawa, Real-time Measurement of DNA Degradation under Radiation by Silicon Nanotweezers Coupled with Microfluidic Cavity, Technical Meeting on Sensors and Micromachines 2014.

 

2013

Journals
Conferences
  1. G. Perret, T. Lacornerie, M. Kumemura, N. Lafitte, H. Guillou, L. Jalabert, E. Lartigau, T. Fuji, F. Cleri, H. Fujita, D. Collard, Real Time Biomechanical Characterization of DNA Damage under Therapeutic Radiation Beams, MRS Boston, Dec. 3rd 2013 (oral).
  2. M. Kumemura, S. L. Karsten, N. Lafitte, H. Guillou, L. Jalabert, H. Fujita, D. Collard, Isothermal amplification of DNA on tips of silicon nanotweezers and its electrical and mechanical characterizations,  MicroTAS 2013, October 27-31, 2013, Freiburg, Germany.(oral).
  3. G.Perret, T.Lacornerie, M.Kumemura, N.Lafitte, H.Guillou, L.Jalabert, E.Lartigau, T.Fujii, F.Cleri, H. Fujita, D.Collard, Real time bio mechanical characterization of DNA damage under therapeutic radiation beams,  MicroTAS 2013, October 27-31, 2013, Freiburg, Germany. (poster)
  4. N. Lafitte, Integrated MEMS Platform with Silicon Nanotweezers and Open Microfluidic Device for Real-Time and Routine Biomechanical Probing on Molecules and Cells,EMBC'13, July 3-7, 2013, Osaka, Japan. 
  5. N. Lafitte, Y. Haddab, Y. Le Gorrec, H. Guillou, M. Kumemura, L. Jalabert, H. Fujita, D. Collard, Closed-loop control of silicon nanotweezers for improvement of sensitivity to mechanical stiffness measurement and bio-sensing on DNA molecules, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (oral).
  6. H. Guillou, N. Lafitte, L. Jalabert, M. Kumemura, T. Fujii, H. Fujita, D. Collard, SILICON NANO TWEEZERS FOR EASY CELL BIOMECHANICAL MEASUREMENTS, NMC 2013 Workshop, May 1-3, 2013, Stanford, CA, USA. (poster)
  7. H. Guillou, N. Lafitte, R. Léal, L. Jalabert, T. Fujii, H. Fujita, Y. T. Matsunaga, D. Collard, SILICON NANOTWEEZERS WITH DOUBLE ACTUATION AND EXTENDED STROKE FOR SINGLE CELL STUDIESIEEE Transducers 2013, June, Barcelona (Spain). (poster)
  8. N. Lafitte, Y. Haddab, Y. Le Gorrec, H. Guillou, M. Kumemura, L. Jalabert, D. Collard and H. Fujita, ACTIVE CONTROL OF SILICON NANOTWEEZERS DETECTS ENZYMATIC REACTION AT THE MOLECULAR LEVEL, IEEE Transducers 2013, June, Barcelona (Spain). (poster)
  9. N. Lafitte et al., in Proc. Int. Conf. Solid-State Sensors Actuators (Transducers ’13), 2013.

 

2012 and prior

Journals
Conferences
  1. Dominique Collard, Thomas Lacornerie, Momoko Kumemura, Nicolas Lafitte, Herve Guillou, Laurent Jalabert, Eric Lartigau, Teruo Fujii, Fabrizio Cleri, Hiroyuki Fujita, "SILICON NANO TWEEZERS FOR REAL TIME BIOMECHANICAL ASSAY ON DNA DAMAGE BY THERAPEUTIC RADIATION BEAMS" (Oral), MicroTAS, Okinawa, JAPAN, Oct. 28 – Nov. 1, 2012. 
  2. M. C. Tarhan,1 D. Collard, L. Jalabert, M. Kumemura, N. Lafitte, Q. Delouvee, S. L. Karsten and H. Fujita, "CONTINUOUS REAL-TIME MONITORING OF MOLECULAR DETECTION BY SILICON NANOTWEEZERS-INTEGRATED MICROFLUIDIC DEVICE", MicroTAS, Okinawa, JAPAN, Oct. 28 – Nov. 1, 2012.
  3. Y. Tauran, M. Kumemura, N. Lafitte, R. Ueno, L. Jalabert, Y. Takayama, D. Collard, H. Fujita, A. W. Coleman and B-J. Kim, ‘Mechanical effect of calix[n]arene capped silver nanoparticles on DNA measured with silicon nano tweezers’, MicroTAS, Okinawa, JAPAN, Oct. 28 – Nov. 1, 2012.
  4. N. Lafitte, M. Kumemura, L. Jalabert, D. Collard and H. Fujita, REAL-TIME SENSING OF MOLECULE BINDING ON DNA WITH SILICON NANOTWEEZERS, accepted to MicroTAS 2011.
  5. M. Kumemura, D. Collard, R. Tourvielle, N. Lafitte, K. Montagne, S. Yoshizawa, D. Fourmy, L. Jalabert, Y. Sakai, S. Takeuchi, T. Fujii, and H. Fujita, INTEGRATED MEMS PLATFORM WITH SILICON NANOTWEEZERS AND OPEN MICROFLUIDIC DEVICE FOR MOLECULAR AND CELLULAR BIOMECHANICAL ASSAYS, Accepted as an oral presentation at IEEE Int. Conference on MEMS 2011, Cancun, Mexico.
  6. N. Lafitte, M. Kumemura, D. Collard, R. Tourvielle, K. Montagne, S. Yoshizawa, D. Fourmy, L. Jalabert, Y. Sakai, S. Takeuchi, T. Fujii and H. Fujita, “Silicon nanotweezers for molecular and cellular biomechanical assays,” The 6th International Conference on Microtechnologies in Medicine and Biology, Lucerne, Switzerland, MMB 2011.
  7. N. Lafitte, M. Kumemura, D. Collard, S. Yoshizawa, D. Fourmy, L. Jalabert, S. Takeuchi, T. Fujii, H. Fujita, Direct bio-mechanical sensing analysis of enzymatic reactions on DNA by silicon nanotweezers, Technical Meeting on Micromachine and Sensor Systems, IEE Japan, 2010, June 17-18, Tokyo.
  8. M. Kumemura, D. Collard, S. Yoshizawa, D. Fourmy, N. Lafitte, L.Jalabert, S. Takeuchi, T. Fujii, H. Fujita, DIRECT BIO-MECHANICAL SENSING OF ENZYMATIC REACTION ON DNA BY SILICON NANOTWEEZERS, IEEE Int. Conf. on MEMS 2010, Hong Kong.
  9. N. Lafitte, M. Kumemura, D. Collard, S. Yoshizawa, D. Fourmy, L. Jalabert, S. Takeuchi, T. Fujii and H. Fujita, “Direct bio-mechanical sensing of enzymatic reaction on DNA by silicon nanotweezers," IEJ Workshop management system, The papers of technical meeting on Micromachine and Sensor System, The Institute of Electrical Engineers of Japan, pp.127-131, Tokyo 2010.
  10. N. Lafitte, M. Kumemura, M. Nagai, L. Jalabert, D. Collard and H. Fujita, “An open microfluidic device with acrive valves for accurate trapping of DNA by silicon nanotweezers," Proc. of 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1865-1867, Groningen, The Netherlands, μTAS 2010.

↑Page top

eujo limms