Shohei KANEDA, Dr.

photo_KANEDA.jpg Host Laboratory FUJII LAB.
Position in LIMMS Associate Project Researcher
Main Research Topic in LIMMS

Bio-MEMS - Heterogeneous synthetic peptide-coated surfaces for control of stem cell differentiation

Keywords

Microfluidic, Synthetic peptide, ECM coating, Stem cell

Contact LIMMS/CNRS-IIS (UMI 2820)
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Phone:+81 (0)3 5452 6036 / Fax:+81 (0)3 5452 6088
E-mail shk at iis.u-tokyo.ac.jp
Download icon_pdf.gifAbstract2015_SKaneda.pdf ,

Resume

Short resume :
2012-now Actual position
2008-2012 Here
2004-2008 Here
2001-2003 Here

↑Page top

Research Projects in Limms

1- Heterogeneous synthetic peptide-coated surfaces for control of stem cell differentiation

Context :
Realization of fully-defined cell culture environment for differentiation of pluripotent stem cells including condition of cell adhesive substrata is important for a wide range of fundamental and clinical applications, such as studies on stem cell biology, tissue engineering and drug screening. Use surfaces coated with synthetic peptides derived from active domains of extracellular matrix (ECM) protein as cell adhesion substrata is one of the promising ways to make xeno-free and scalable cell adhesive surfaces as an alternative to conventional surfaces coated with ECM extracted from animals [1]. However, method for patterning of synthetic peptide that offers spatially-defined heterogeneous peptide-coated surfaces for stem cell differentiation has not been studied well.
Objectives & Methods :
The objective of this project is to develop a method to realize spatially-defined heterogeneous peptide-coated surfaces for stem cell differentiation [2]. To form micropattered peptide-coated surfaces, we use microfluidic technology utilizing capillary force [3] to archive patterned delivery of peptide solutions in the process of peptide coating to cell culture substrate.
Results :
As a demonstration, a microfluidic device for differentiation of embryoid body (EB) from mouse iPS cells were fabricated (Fig. 1A) and spatially-defined BSA-coated surfaces are successfully obtained (Fig. 1B). Furthermore, we found that peptide-coated surfaces show adhesiveness to miPS cells and differences of their adhesiveness to the cells affect size of colony (Fig. 2).

Fig.1A_SK.jpg

                                Fig1SK-TM-new.jpg

Fig. 1 (A) An EB from miPS cells is positioned to the center of middle channel on the device.

(B) Side channels of the device coated with fluorescent BSA conjugates.

Fig2SK-TM.jpg

Fig. 2 Phase contrast and fluorescence images of Nanog-GFP miPS cells cultured on immobilized peptides, Laminin active domain 1 and GRGDS peptide (binding domain in fibronectin). Small colony forming was found in these peptides compared to that of control.

References :
[1] Z. Melkoumian et al., Nat. Biotech., 28, pp. 606-610, 2010.
[2] S. Kaneda et al., proc. ISSCR 2010.
[3] K. Ono et al., Electrophoresis, 34, pp. 903-910, 2013.

↑Page top

Main publication List (papers, conferences and patent)

 2014

Journals
  1. Chowdhury, MM., Danoy, M., Rahman, F., Shinohara, M., Kaneda, S., Shiba, K., Fujita, N., Fujii, T., Sakai, Y.: “Adhesion of Pancreatic Cancer Cells in a Liver-Microvasculature Mimicking Coculture Correlates with Their Propensity to Form Liver-Specific Metastasis In Vivo,” BioMed Res. Int., Vol. 2014 (2014), Article ID 241571. 13 pages. 
  2. Kim, SH., He, XM., Kaneda, S., Kawada, J., Fourmy, D., Noji, H., Fujii, T.: “Quantifying genetically inserted fluorescent protein in single iPS cells to monitor Nanog expression using electroactive microchamber arrays,” Lab Chip, Vol. 14, Issue 4 (2014), pp. 730-736.
Conferences
  1. H. Guillou, N. Iwanaka, N. Lafitte, M. Kumemura, K. Shimizu, L. Jalabert, S. Kaneda, T. Fujii, H. Fujita, K. Sakata, S. Konishi, D. Collard, SILICON NANO TWEEZERS WITH FORCE/STIFFNESS/LOSSES MEASUREMENTS OF LOCAL CONTRACTILITY OF MYOCYTES, 7th Asia-Pacific Conference on Transducers and Micro/Nano Technologies (APCOT2014), 11-6 (2pages), June 29 - July 2, 2014 / EXCO, Daegu, Korea.
  2. Kim, S.-H., Maria, A., Kobayashi, M., Kaneda, S., Laurell, T., and Fujii, T., “Integration of acoustophoretic cell enrichment and dielectrophoretic single cell trapping for highly efficient rare-cell analysis,” Proceedings of MicroTAS2014 conference, San Antonio, TX, USA (2014), pp. 421~423
  3. Kaneda, S., Nakamura, H., Kawada, J., Ono, K., and Fujii, T.,: “"Formation of Spatially-Defined Heterogeneous ECM-Coated Surfaces Using Microfluidic Patterning with Capillary Stop Valves to Control Cell Adhesion of Stem Cells",” Proceedings of IEEE Micronanotechnology in Medicine conference 2014, Hawaii, USA (2014), ThBT2.15.

 

 2013

Journals
  1.  S. Yamaoka, N. Ito, S. Ohka, S. Kaneda, H. Nakamura, T. Agari, T. Masatani, K. Nakagawa, K. Okada, K. Okadera, H. Mitake, T. Fujii and M. Sugiyama, “Involvement of the Rabies Virus Phosphoprotein Gene in Neuroinvasiveness”, J. Virol., 2013 87 (22) pp.12327-12338, doi: 10.1128/JVI.02132-13
  2. K. Ono, S. Kaneda and T. Fujii, “Single-step CE for miniaturized and easy-to-use system”, Electrophoresis, 2013, 34 (6) pp.903-910, doi: 10.1002/elps.201200365.
Conferences

 

 

 2012

Journals
  1. L. Desbois, A. Padirac, S. Kaneda, Y. Rondelez, D. Hober, D. Collard & T. Fujii, A microfluidic device for on-chip agarose microbeads generation with ultralow reagent consumption. Biomicrofluidics. 6, 044101 (2012); doi: 10.1063/1.4758460 
  2. S. Kaneda, K. Ono, T. Fukuba, T. Nojima, T. Yamamoto and T. Fujii, "Modification of the Glass Surface Property in PDMS-Glass Hybrid Microfluidic Devices", Analytical Sciences, Volume 28, Number 1, pp. 39-44, (2012) article
  3. T. Nojima, S. Kaneda, H. Kimura, T. Yamamoto and T. Fujii, "Application of cell-free expression of GFP for evaluation of microsystems", Frontiers in Bioscience, Vol. 17, pp. 1931-1939, 2012, http://www.bioscience.org/2012/v17/af/4029/list.htm . DOI: 10.2741/4029.
Conferences
  1. S. Kaneda,  J. Kawada,  A. Araki,  X. He and T. Fujii,   "Synthetic Peptides and Polyethylene Glycol Surfaces for Micropatterning of Pluripotent Stem Cells, " T-2264, Proc. ISSCR 2012, Yokohama, Japan, June 13 - 16, 2012. 
  2. J. Kawada, H. Kimura, S. Kaneda, H.  Akutsu, Y. Sakai and T. Fujii, "Generating articulated embryoid body for spatially controlled differentiation, " T-2270, Proc. ISSCR 2012, Yokohama, Japan, June 13 - 16, 2012. 
  3. X. He, H. Kimura, S. Kaneda, J. Kawada, H. Akutsu, Y. Sakai and T. Fujii, “Patterned Neural and Cardiac Differentiation of One EB of Nanog-iPS Using a Microfliuidic Device,” T-3303, Proc. ISSCR 2012, Yokohama, Japan, June 13 - 16, 2012. 
  4. M. Kobayashi, S. Kaneda, S. H. Kim, and T. Fujii, "An interdigitated microelectrode array for capture and lysing cell as a tool for downstream analysis of acoustofluidic cell separation", 10th Ultrasonic Standing Network Conference (USWNet 2012), Lund, Sweden (2012), pp.90-91. 
  5. S. H. Kim, X. He, S. Kaneda, J. Kawada, D. Fourmy, H. Noji, and T. Fujii, "Quantitative analysis of gene expression level of indivisual iPS cells by using electroactive microwell array", Proceedings of MicroTAS 2012 conference, Okinawa, Japan (2012), pp.581-583.
  6. S. Kaneda, A. Araki, and T. Fujii, "An electronic pipette compatible microfluidic chip for continuous processing of size-dependent cell depletion and immunohistochemistry", Proceedings of MicroTAS 2012 conference, Okinawa, Japan (2012), pp.1276-1278.
  7. A. Araki, S. Kaneda, and T. Fujii, "A simple method for cell isolation by utilizing both cell size and affinity to surfaces", Proceedings of MicroTAS 2012 conference, Okinawa, Japan (2012), pp.1702-1704.
  8. K. Ono, S. Kaneda, and T. Fujii, "Single-step capillary electrophoresis for field-amplified sample stacking", Proceedings of MicroTAS 2012 conference, Okinawa, Japan (2012), pp.1948-1950.
  9. S. Kaneda, A. Araki, and T. Fujii, "A Multi-Well Microfluidic Plate for Parallelization of Cell Separation andCompartmentalization of Separated Cells", Proceedings of IEEE EMBS Conference on Micro and Nanotechnology in Medicine 2012, Hawaii, USA (2012), pp. 146 (ThBT1.42)
  10. A. Araki, S. Kaneda, and T. Fujii, "A Microfluidic Chip for Capturing Rare Cells Utilizing Both Cell Size and Immunoaffinity", Proceedings of IEEE EMBS Conference on Micro and Nanotechnology in Medicine 2012, Hawaii, USA (2012), pp. 140 (ThBT1.36).

 

2011 and prior

Journals
  1. T. Fukuba, A. Miyaji, T. Okamoto, T. Yamamoto, S. Kaneda and T. Fujii, Integrated in situ genetic analyzer for microbiology in extreme environments, RSC Advances, 2011, Vol. 1, Issue 8, pp.1567-1573, http://pubs.rsc.org/en/content/articlelanding/2011/ra/c1ra00490e
  2. Y. Kimura, S. Kaneda, T. Fujii and S. Murata, Layer-by-Layer Assembly of Photonic Crystal Using DNA, IEEJ Transactions on Sensors and Micromachines, Vol. 131 (2011) , No. 8 pp.286-291 (in Japanese), http://www.jstage.jst.go.jp/article/ieejsmas/131/8/131_286/_article
  3. S. Kaneda, K. Ono, T. Fukuba, T. Nojima, T. Yamamoto and T. Fujii, A Rapid Method for Optimizing Running Temperature of Electrophoresis through Repetitive On-Chip CE Operations, International Journal of Molecular Sciences, 2011, 12(7), 4271-4281; doi:10.3390/ijms12074271; URL: [URL]
  4. S. Kaneda et al., proc. ISSCR 2010.
  5. S. Kaneda, K. Ono, T. Fukuba, T. Nojima, T. Yamamoto and T. Fujii, Pneumatic handling of droplets on-demand on a microfluidic device for seamless processing of reaction and electrophoretic separation, Electrophoresis, 2010, 31(22), pp. 3719-3726.website
  6. K. Ono, S. Kaneda, T. Shiraishi and T. Fujii, Optofluidic tweezer on a chip, Biomicrofluidics. 2010, 4(4), pp. 43012-43016.website
  7. S. Kaneda and T. Fujii, Integrated Microfluidic Systems, Adv Biochem Engin/Biotechnol (2010) 119: 179–194.journal link.
Conferences
  1. J. Kawada, H. Kimura, S. Kaneda, H. Akutsu, Y. Sakai and T. Fujii, "FORMATION OF ARTICULATED EMBRYOID BODY (art-EB) FOR SPATIALLY CONTROLLED DIFFERENTIATION", Proc. MicroTAS 2011, pp.846-848, 2011.

  2. S. Kaneda, T. Minamisawa, K. Shiba and T. Fujii, A peptide aptamer-coated surface for selective adhesion of cancer cells in blood cells suspension, Proceedings of MicroTAS 2010 conference, Groningen,The Netherlands (2010), pp.935-937.

  3. S. Kaneda, T. Minamisawa, K. Shiba and T. Fujii, Adhesion of cancer cells to a peptide aptamer-coated microchannel, Conference Proceedings of International Symposium on Microchemistry and Microsystems (ISMM 2010), Hong Kong (2010), pp.98-99.

  4. S. Kaneda, T. Minamisawa, K. Shiba and T. Fujii, "Selective adhesion of target cancer cells from red blood cell suspension using a peptide aptamer-coated microfluidic device, The 2010 International Chemical Congress of Pacific Basin Societies (PACIFICHEM 2010), Hawaii, USA (2010), #529.

  5. S. Camou, T. Fukuba, S. Kaneda and T. Fujii, "Lab-on-a-Chip Activities developed at the Fujii laboratory: From PCR to Detection System based on PDMS technology",International Conf. on Biologing Science, Tokyo, Japan, March, 2003 (INVITED PAPER).
  6. K. Ono, S. Kaneda, S. Camou and T. Fujii, "Integration of multi-aspherical lenses and optical fibers onto a PDMS microfluidic device for fluorescence-based detection", in Proc. of the 7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems (MICROTAS'2003), pp. 1307-1310, Squaw Valley (USA), October, 2003.

↑Page top

eujo limms